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Abstract : In this article, the adaptive super-twisting sliding mode control is designed and applied for 

three degrees of freedom robot with unknown perturbation model of the system. This method combines 

an advanced property of adaptive law and the high order super-twisting sliding mode control to enhance 

the sliding manifold surface which can reach the equilibrium point in the shorter time. Likewise, the 

stability and estimation of the unknown perturbations of the controlled system are satisfied by Lyapunov 

stability theory and Moreno's theorem. The effectiveness of adaptive super-twisting sliding mode control 

in unknown perturbation of the system is verified by comparing with the general super-twisting sliding 

mode control method. Therefore, a comparison results of both controllers via simulation are 

implemented. Also, the root mean square error is calculated for evaluation of the both controller's 

tracking performances.
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1. Introduction 

The sliding mode controller (SMC) technology is 

perhaps originally a useful control method to deal 

with high nonlinearity and parameter fluctuations of 

the controlled system. This potential controller was 

evolved from pioneering working in the 1960s by 

Chrisstopher Edwards and Sarah K. Spurgeon.1) In 

the advanced SMC, the dynamic response of the 

system is suitably chosen of switching control 

function. However, the disadvantage of this 

technology has a fundamentally discontinuous 

control signal in the domain of control applications. 

To solve this issue, approximating or smoothing 

strategies is added to SMC implementation.

Many types of SMC methods have been reported, 

such as second order sliding mode algorithm, the 

sliding mode observer paradigm and a Lie-algebraic 

observer canonical form, etc. And, output feedback 

SMC, Sliding block control and discrete time sliding 
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mode control, etc2,3) have given something desirable 

control performance. Furthermore, the super-twisting 

algorithm (STA) is the most advanced one of SMC 

methods presented in this time, which is widely 

applied and used to second-order sliding mode 

technique.4) STA provides a solution that  

considerably reduces the chattering phenomenon in 

control behavior. Notably, the super-twisting sliding 

mode control (STSMC) strategy is basically 

designed based on the Lyapunov theory to occupy 

the system stability.5) Therefore, the super-twisting 

SMC has the known properties of finite time 

convergence and robustness against internal and 

external uncertain dynamic characteristics.

Alexander Barth et al. designed a super-twisting 

sliding mode controller based on Lyapunov stability 

theory by using certainty equivalence principle.6) In 

this paper, the STSMC combined with the part of 

adaption law was considered on the single input and 

single output (SISO) system to relax the bounded 

condition and reduce the sliding mode gains 

significantly. Where, the system stability is 

guaranteed by Lyapunov theory. Jorge Davila et al. 

modified the super-twisting sliding mode technology 

with second order to design a velocity observer for 

uncertain mechanical systems.7) The discrete form of 

the observer is designed and implemented separately 

from the controller. Especially, a case study of 

discrete form of the observer was demonstrated to 

evaluate the effectiveness of this algorithm in 

experiment. Dimitrios Papageorgiou et al.8) estimated 

the robust backlash problem by using sliding mode 

and adaptive principles on industrial drive train 

systems. In this study, a super-twisting sliding mode 

observer was designed in order to estimate the 

injection signal. Likewise, the adaptive part was 

added into the observer to update the dead zone of 

backlash angle. The controller theories of dynamic 

system response and robustness were successfully 

validated by the experiments.

More specially, an optimal adaptive super- 

twisting sliding mode strategy was deployed for 

two-axis helicopter, which was done by Amjad J 

Humaidi et al..9) The proposed controller was 

developed based on STA method and Lyapunov 

theory to avoid the chattering phenomena and 

estimate the unknown parameters, respectively. The 

simulations for two-axis helicopter were 

demonstrated and the effectiveness of controller 

theory was verified too.

Besides, the adaptive control provides its 

advantages in the automatic adjustment of the 

controllers or  guarantee the performance of the 

control system while the parameters of dynamic 

model parameters are unknown or perturbed in real 

time.10) Another area of current interest is the 

development of adaptive control with possibly 

unknown perturbations such as backlash, viscous 

friction and vibration, etc.11-16) An intense focus on 

one of the most advantages of the adaptive control 

is the global stability which is guaranteed by the 

Lynapunov theory. Hence, the adaptive law is easily 

combined with the other controllers such as sliding 

mode control, PID, backsteping, and fuzzy logic, 

etc. such that it becomes more advanced controller.

The motivation of this paper is to solve the 

unknown perturbation problems such as backlash, 

viscous friction and vibration, etc. for 3-DOF robot 

manipulator. 

Throughout the some fundamentally different 

advantages and disadvantages of STSMC, an 

adaptive super-twisting sliding mode control 

(ASTSMC) will be deployed with 3-DOF system.

Then, the contributions of this paper are 

emphasized as follows:

Design of super-twisting sliding mode control 

for 3-DOF system in detail. 

The stability analysis and definition of bound 

of unknown perturbation of system in STSMC based 

on Lyapunov theory and Moreno's theorem.



A Study on An Adaptive Super-Twisting Sliding Mode Control Design with Perturbation Estimation

동력시스템공학회지 제24권 제2호, 2020년 4월  55

Design of adaptive super-twisting sliding mode 

control for 3-DOF system in detail.

A comparison with STSMC and ASTSMC has 

been implemented. 

This paper is organized as follows. Section 2 

discusses the modeling of the 3-DOF system with 

unknown parameters. Section 3 analytically describes 

the design of STSMC for the controlled system in 

detail and provides the convergence and stability 

condition of STSMC by Lyapunov theory and 

Moreno's theorem. The ASTSMC has been designed 

in detail in section 4, where also a proof for the 

global stability of unknown perturbations system is 

verified by Lyapunov theory. The simulation 

validation of the theoretical findings is presented in 

section 5. Section 6, conclusions will been drawn. 

2. System Modeling Equation 

with Unknown Perturbations

An identification and tuning method of the 

system parameters with MATLAB/Simulink has 

been clearly illustrated.17) However, the identified 

and tuned parameters are generally considered as 

nominal and constant values for designing the 

controller. Notably, the nominal values are affected 

by the operating condition, external disturbance and 

uncertainties such as backlash, viscous frictions and 

etc. It is natural that we consider the unknown 

perturbations in control system design process.

Then, let us describe the dynamic equation of the 

controlled system. The general description for 

3-DOF robot system with uncertainties is given as 

follows: 

      .  (1)

Where [deg] is the angular positions of the 

system. [V] is the control input signals of the 

each actuator.   is the dumped unknown 

perturbations of the system such as backlash, 

viscous frictions etc. 

Where, the nominal values of parameters given 

Eq. (1)  are defined as follows:

           

     , 

     .

[Remark 1]   is the uncertain perturbations. 

The derivative of uncertainty satisfies ≤  , 
where     is the upper bounds of the derivative 

of the unknown perturbations.

3. Super-Twisting Sliding Mode 

Control Design

The relation of the uncertain perturbation and 

super-twisting sliding mode control theory is 

demonstrated with Lyapunov theory.4) Based on this 

results, the authors design a control system for 

controlling 3-DOF robot motion by estimating the 

uncertain parameters on adaptive rule. 

Then, let us assign the sliding manifold surface 

as follows: 

 
.                          (2)

Where   is positive parameters. The error   

between the desired angular position  and the 

actual angular position   is defined as follow:

   .                           (3)

Taking the derivative time of Eq. (2) gives








 .              (4)

From Eq. (1) and Eq. (4), the following Eq. (5) 

is obtained with a condition of sliding manifold 

defined as Eq. (6).
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
 

 .    (5)

 ≅∈     .                 (6)

Then, the control law based on the 

Super-Twisting Algorithm is calculated as 

following.

  


  .                    (7)

Where

 


 

  


   

              (8)

And, the function ∙ or ∙ is 

defined as











∈    i f   i f  
 i f   .           (9)

Then, we need to verify the system stability 

condition with the control law Eq. (7).  

By substituting Eq. (7) into Eq. (5), the 

equivalent sliding manifold is given as following. 


  .      (10)

Where,  and  are positive control 

coefficients.

Then, the authors propose a canditate of 

Lyapunov function as follows: 

   


  






(10)

The time derivative along the above Lyapunov 

function is given as follows:

  















 

             (11)

Substituting Eq. (7), Eq. (8) and Eq. (10) into 

Eq. (11), then the Eq. (11) can be written as a 

quadratic form [5]:








 






         (12)

where, 

  
  ,                  (13)  

 

 


 


 

 
 

 
    



  




Applying the result of Moreno and Osorio,18) the 

bounds of the perturbations are presented as follows:








 ≤






,            (14)

where, 

 














 






.             (15)

The expression for the derivative of the 

Lyapunov function Eq. (12) is reduced to








 ≤ ,               (16)

where
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 










 
 


    

  


 

.  (17)

[Remark 2] The system stability is preserved, if 

the controller gains satisfy the following conditions:

  


    

 


,            (18)

then   . This condition implies that    

and ≤  for all the time ≥ . This clearly 

indicates the sliding manifold   will converge to 

zero with →∞. ▀

[Remark 3] The Moreno and Osorio’s result18) 

gives that the state of the system can reach the 

equilibrium point with →∞ by STSMC. Then the 

convergence time is written as follows: 

 

  






 





 

 
 ∥∥,       (19)

  ∥∥,
where,

 

 


 

 


 

  


 

          (20)

  
 


 


 

 
 

   
.

Sliding manifold 
surface 

Super-Twisting 
sliding mode control 

Fig. 1 Schematics of super-twisting sliding mode 

control system method

4. Adaptive Super-Twisting 

Sliding Mode Control Design

In the controlled systems, there are many 

uncertain parameters which may not be directly 

measured and estimated. Also, the considered robot 

system of this study has several uncertain 

parameters. As abovementioned, the target 

parameters to be estimated in this study are  

which are shown in Eq. (1) and Eq. (5).     

It is well known fact that the super-twisting SMC 

cannot acquire the exact control law with uncertain 

parameters. Therefore, we need to estimate the 

uncertain parameters by adaptation method for 

applying the super-twisting SMC to this issue.  

The adaption law is designed to update and 

estimate the real values  . Then estimation errors 

  with the estimated values   are defined as

 
  .                           (21)

Using this relation, the controlled system shown 

in Eq. (1) can be rewritten

       .    (22)

Then, the sliding manifold surface with adaptation 

rule is assigned as

 
 .                (23)
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Where   is positive parameters, and ⋅  

are the parameters being adapted. The error between 

the desired position  and the actual position   is 

defined

   .                         (24)

And, the time derivative of Eq. (23) is calculated as

   

.   (25)

The updated adaptive super-twisting sliding mode 

control law is assigned as

  


  ,              (26)

where,

 


 

  




        (27)

with constant values    and   .

The following is the proof for verifying the 

system stability. Using the well known Lyapunov 

method, a Lyapunov candidate of the adaption 

manifold sliding surface yields

  


 

 

.                   (28)

Then the time derivative the Lyapunov function 

Eq. (28) is 

   
 
 .                (29)

Substituting Eq. (26) into Eq. (22), we can obtain




 




.(30)

Sliding manifold 
surface 

Super-Twisting 
sliding mode control 

Adaption law

Fig. 2 Adaptive super-twisting sliding mode control 

scheme

The time derivative of the adaption sliding 

manifold surface Eq. (25) from Eq. (24) and Eq. 

(30) becomes




 




(31)

Taking Eq. (31) into Eq. (29), because of 

  

in the derivative time, the time derivative of the 

Lyapunov function becomes






 
 


 

   (32)

[Remark 4] The stability of the system is 

preserved, if the controller gain and the term satisfy 

the adaption laws determined as follows:

  with   .                (33)

This condition keeps    and ≤  for all 

the time. Therefore, the sliding manifold surface 

  and the estimation perturbation   will 

converge to zero with →∞. ▀

5. Simulation results

Simulations were provided for demonstrating the 
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convergence and accuracy properties of the proposed 

control scheme. The performance comparison study 

of the adaptive super-twisting SMC with the 

conventional super-twisting SMC method was 

performed and discussed through simulation.

5.1 Nominal case

Firstly, the simulated results were implemented by 

the nominal value   from the identification 

algorithm. Where the nominal values of the 

parameters are       with 

the unknown parameter set as   . 

Secondly, the another simulation considering  

perturbed values   by estimating was done to 

show better properties of ASTSMC than the 

non-adaptive control scheme with unknown 

perturbation terms.

The initial values including states and parameters 

for simulation were defined as following to initialize 

the simulation for both the adaptive and 

conventional super-twisting sliding mode control 

system. 

 
 


             (34)

The calculated controller gains for two control 

schemes are summarized in Table 1. As mentioned 

before, the robot system with three arms is controlled 

by three independent controllers. Then the controller 

gains for each arm are represented as Table 1.

Table 1 Controller gains for each arm

Control 
Method Joint 1 Joint 2 Joint 3

STSMC

  

  

  

  

  

  

  

  

  

ASTSMC

  

  

  

  

  

  

  

  

  

  

  

  

At first, the dynamic response of the ASTSMC and 

STSMC in nominal condition are shown in Fig. 3.

Fig. 3 shows the tracking responses of three arms’ 
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Fig. 3 Tracking performances of STSMC and 

ASTSMC method in nominal condition
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Fig. 4 Control signals of STSMC for actuators
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Fig. 5 Control signals of ASTSMC for actuators

Table 2 RMS error of each joint [deg] : nominal 

case

Control 
Method Joint 1 Joint 2 Joint 3

STSMC 1.9854 1.1817 1.9440
ASTSMC 2.0762 0.9788 1.6452

angular positions (   ) for the step type 

reference signal.

  With the nominal values in which parameters  

are constant, we found that the control performance 

of ASTSMC is better than STSMC. As illustrated in 

‘A’ and ‘B’ which are zoomed in on the each 

figure, the ASTSMC method can quickly update the 

unknown physical parameters of the system such

that faster responses without overshoot are obtained 

than the conventional STSMC. 

As similar to tracking performance comparison 

study, the errors of the angular positions     

were calculated and shown in Table 2. This result 

gives us same conclusion.  

5.2 Perturbed case

To make a clearer comparison in case of uncertain  
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Fig. 6 Tracking performances of STSMC and 

ASTSMC method in perturbed condition

condition, the different parameters values were set. 

They were defined as       

with the unknown parameter  perturbation rate 
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  . The effect of parameter perturbations on 

dynamic tracking response of the controlled system 

is shown from Fig. 6 ~ Fig. 9.

Fig. 6 shows the tracking responses of three 

arms’ angular positions (   ) for step type 

reference signal. With the uncertain parameters , 

we found that the control performance of ASTSMC 

The errors of the angular position tracking were also 

evaluated. The evaluation result is summarized in 

Table 3. Evidently, the adaptive super-twisting 

sliding mode control made less RMS error than the 

conventional method. Finally, the behaviors of the 

design parameters concerning optimization process 

with ASTMSC are shown in Fig. 9.    
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Fig. 7 Control signals of STSMC in the perturbed 

condition
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Fig. 8 Control signals of ASTSMC in the perturbed 

condition

Table 3 RMS error of each joint [deg] : perturbed 

case

Control 
Method Joint 1 Joint 2 Joint 3

STSMC 1.9348 1.1534 1.8105

ASTSMC 1.7662 0.9971 1.5485
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Fig. 9 Behaviors of parameter updating

5. Conclusions

In this study, the adaptive super-twisting sliding 

mode control strategy was developed and applied to 

3DOF robot motion control problem with unknown 

parameters estimation including nominal case. 

The advanced properties of this technology was 

demonstrated by combing conventional high order  

sliding mode control and adaptive control theory. 

The system stability, convergency of states by 

Lyanpunov method and controller gains estimation 

are definitely guaranteed. 

From the two simulation studies, we found that 

the ASTSMC method could cope with the parameter 

uncertainty such that it can keep better control 

performance and robustness than conventional 

sliding mode control method. 
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Most physical systems have dynamic parameters 

which are time varying. Therefore it is natural that 

we provide a real time parameter updating strategy. 

The adaptive sliding mode control method is a 

solution for this issue.

Finally, we can conclude that the proposed 

ASTSMC guarantees better tracking performance and 

stronger robustness to the uncertain dynamics.  
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